
Getting Started with Git

Dennis Jarecke
Six Sycamores, LLC
November 15, 2014

Who am I?

Presentation available at

www.linkedin.com/in/dennisjarecke

What is Git?

Git is a distributed revision control and source code
management system with an emphasis on speed,
data integrity, and support for distributed, non-
linear workflows.

It was originally created by Linus Torvalds for
Linux development, but has since become the
most widely adopted version control system for
code development.

Source: en.wikipedia.org/wiki/Git_(software)

A Highly Simplistic Overview

A git repository is a directory or folder on your computer
with the files you want to track and a .git directory which
holds configurations settings, branches, commits, etc.

Each repository is made up of one or many branches.

Branches are made up of commits. Commits are a series
of changes made to the files in the folder.

Branches can track branches on other computers - this is
why a central server is not required.

More Detail on the Repository

❖ Git repository - database of changes,
revisions, history, etc. It has three
components

❖ Configuration settings - local to that
repository only

❖ Two primary data structures
➢ Index - private to a repository
➢ Object Store - permanent changes

that get copied or cloned

4 Objects in Object Store

❖ Blob: Each version of a file is represented as a blob.
There is no metadata in the blob including the filename!

❖ Tree: one level of directory info including blob
identifiers, path names, metadata, other trees. This
recreates the directory structure.

❖ Commit: metadata about a change - author, log
message date, etc. It points to a tree object and has a
commit parent - thus a full history can be constructed.

❖ Tag: assigns a human-readable name to an object -
usually a commit.

SHA1 = Object IDs

❖ Every object in the object store has a unique
SHA1 hash value.

❖ See http://en.wikipedia.org/wiki/SHA-1
❖ ANY change to an object will cause a change in

its SHA1 hash value - thus ANY change to a file
will tell git (and you) that the file has changed.

❖ SHA1s are globally unique - all repositories will
have the same SHA1 for the same file, path, etc.
i.e. the same SHA1 for identical blobs, trees,
commits, tags.

❖ Git speak: SHA1, hash code, object id used
interchangeably.

Source: http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is

The Index

❖ A temporary and dynamic binary file that
contains a snapshot of the folder your
repository is in at some point in time.

❖ An index can be a specific commit or can be
changes you will commit later.

❖ The index records changes you have made
to a file.

❖ Specific changes in an index will later
become a permanent commit in the
repository.

Git Exercise 1:

❏ Move to the folder where you want to create
a new git repository - it doesn’t matter if
there are files there or not. Let’s do an
empty one as a beginning example.

❏ git init - will create a .git folder and initialize
the git repository. This is only done once.

❏ Create README.txt with the line “Hello
world!”

Git Exercise 1 (cont’d):

❏ git status will now show an untracked file.

Untracked files
A prompt of
what to do.

VERY IMPORTANT!
master is the “default” branch in git.
However, it is not unique or special.
You can delete it and use another
branch that you create.

You haven’t
put anything
into the
repository
yet.

Git Exercise 1 (cont’d):

❏ git add README.txt will add this to the
index. Then type git status again.

It tells you the
files that need
to be
committed.

Yes, the file is new and has never been
committed.

It tells you the exact
command if you want to
remove it from the index and
not have the file and its
changes committed.

Git Exercise 1 (cont’d):

❏ git commit -m “initial commit” will commit
this change so it is permanently stored.
Then type git status again.

Congratulations! The README.txt file has been
committed!

Git Exercise 1 (cont’d):

❏ git log will show the commit logs

The message in our
git commit command.

SHA1 of the commitAuthor name and email
set by git config user.
name “Dennis Jarecke”
and git config user.email
“jarecke@gmail.com”

Git Exercise 1 (cont’d):

❏ Change the file to say “Hello universe!”
❏ git status . . . Finally we see something

useful!

Git recognized that
the file changed.
Awesome!

It tells you how to
get rid of the
changes. Try this
one yourself!

And it reminds us to use the
git add command to put it in
the index to be committed.

But, we haven’t
added it to the
index with the git
add command.

Git Exercise 1 (cont’d):

❏ Pretend we didn’t make the change to the
file. How can we see what change was
made? git diff -- README.txt

Here it tells us
we went from
“Hello world!”
to “Hello
universe!”

Git Exercise 1 (cont’d):

❏ git add README.txt then git status

Again, it
show the
changes
that need to
be
committed.

And now it is “modified” and not
a “new file”.

Git Exercise 1 (cont’d):

❏ git commit -m “change from world to
universe”

Summary of
what was
changed.

Shortened SHA1 Log message

Git Exercise 1 (cont’d):

❏ git log

Git log shows the SHA1s and commit messages -
nothing new here, but you can see the progression of
the changes.

Git Exercise 1 (cont’d):

❏ Now pretend we didn’t make any of the
commits. How can we see the changes
between two commits?

❏ git show
d88a9f0a46d0ced14ad4acfb827a1e33383d4
84f
04dd3bd266490f14c33d145e9d1cfbc74c104
9ea

❏ See next slide

Git Exercise 1 (cont’d):

Here are the
changes.

Git Exercise 1 (cont’d):
❏ Review

❏ git init
❏ git status
❏ git add
❏ git commit -m
❏ git log
❏ git config
❏ git diff
❏ git show

❏ Want more info?
❏ git help init
❏ git help status
❏ git help add
❏ . . .
❏ You get the point of git help, right?

Hey,
that’s 17
commands!

Git Exercise 2:

In the previous exercise we learned how to
commit and view changes, but we only used
one branch.

Let’s view the master branch as our production
code.

We will create a dev branch for development
code and then merge that into production
when our development is done.

Git Exercise 2 (cont’d):

❏ git branch dev
❏ This creates a copy of the master branch.
❏ There is no git output when you do this - crickets!

❏ git status shows we are still on the master
branch so how do we get to the dev branch?

❏ git checkout dev

❏ git diff master dev will show no differences
between the two branches

Git Exercise 2 (cont’d):

❏ Now let’s modify README.txt to:

Hello universe!

/*
This is a bunch of development code that we are putting in.
What is your favorite language? Mine is FORTRAN! I'm
not kidding!
*/

Git Exercise 2 (cont’d):

❏ Now because we already know the
commands we will do the following:
❏ git status will show that it is modified
❏ git diff -- README.txt will show what has changed
❏ git add will add it to the index
❏ git commit -m “added our development code” will

commit the changes

Git Exercise 2 (cont’d):

❏ git log now shows the new commit!

Git Exercise 2 (cont’d):

Now let’s pretend that we have tested the
development code and we want to put it into
production - i.e. the master branch. How do we do
this?

We will merge the dev branch into the master branch.
But before we do this we must check out master!

THIS IS REALLY IMPORTANT. YOU MUST ALWAYS
CHECKOUT THE BRANCH YOU WANT THE CHANGES

MERGED INTO!

Git Exercise 2 (cont’d):

❏ git checkout master
❏ (An aside - you can do things like git log to see that

the development changes are not in and you can
view the README.txt file and see that the
development changes are not there.)

❏ Since we are moving code into production let’s just
verify what will be going in with git diff master dev.
This will show all the details of the differences!

❏ But what if you have lots of file changes (we have
only one here) and just want to see what files are
changing? Use git diff --stat master dev.

Git Exercise 2 (cont’d):

❏ “Enough already! Just show me how to merge my
changes!”
❏ git merge dev
❏ Verify with git log and looking at the file.

Shows us what
has been
changed.

What’s this Fast-forward
thing?

Fast-forward

❏ How does git know what branch you are on and
where you are at on the branch?
❏ Think of the branch name as a pointer to the top

commit of that branch.
❏ HEAD is pointer/reference to the current branch

name. HEAD points to the top commit of the
current branch.

❏ When you change branches you change where
HEAD points to. Use git show-ref to see the
commits each branch name points to.

❏ Think of a merge as a re-pointing of HEAD

Non-Fast-forward - Before git merge

C1 C2 C4

C3 C5

C6

master

dev

HEAD

If I point HEAD to C5 then I lose C4 changes. Therefore I have to create
a new commit (C6) that has both C4 and C5 changes and point HEAD

to it. Therefore I can’t fast-forward.

Non-Fast-forward - After git merge

C1 C2 C4

C3 C5

C6

master

dev

HEAD

Fast-forward - Before git merge

C1 C2 C4C3 C5

master

dev

HEAD

If I point HEAD to C5 then I still get the change in C4. I do not have to
create a new commit to do it. Therefore I CAN fast-forward.

Fast-forward - After git merge

C1 C2 C4C3 C5

master

dev

HEAD

What is Git Hub

An online set of git repositories used for both
open source projects and for companies.

❏ Accounts are FREE
❏ Public repositories are FREE
❏ “Micro” account is $7/month and gives you 5

private repositories.

Git Exercise 3

A remote is a reference to a branch in another repository.

Think of it as two things (this may or may not be accurate
but is how I think of it)
❏ A commit (i.e. SHA1) just like a branch name points to

a local commit.
❏ A method for reaching the repository

❏ A Linux path (if it’s on the same computer.)
❏ file (Yes, there is a difference from above.)
❏ ssh
❏ https
❏ git (Some sort of git way of connecting repositories.

Don’t ask because I don’t know.)

Git Exercise 3 (cont’d):

Let’s clone (yes, this is official git speak) a git hub
repository with the following command:
❏ git clone https://github.com/tetmo113/Search-Examples

❏ This is one of my public repositories - you can select
any public or private repository you have access to.

❏ Even if you are not a collaborator you can still clone a
repository! You just can’t push back into it!

Git Exercise 3 (cont’d):

❏ git clone https://github.com/tetmo113/Search-Examples

This will default to putting the repository into a folder named after the Git
Hub repository. You can always do something like
 git clone https://github.com/tetmo113/Search-Examples myrepositoryname
to put the repository into a directory named myrepositoryname.

Git Exercise 3 (cont’d):

❏ git branch -a

Remember a remote branch points to a commit (branch name) on a remote
machine. You can have many remotes. Just like a beginning default
branch is called master, we call the default remote “origin”. The remote
named origin was automatically configured to point to https://github.
com/tetmo113/Search-Examples when we di the git clone command.

It automatically creates a
local master branch.

Git Exercise 3 (cont’d):

❏ git remote show will list your remotes
❏ git remote show origin will show details about the origin

remote

URL of the
remote

Local master
tracks
origin/master

Lots of good info. We’
ll talk about pull and
push later.

Git Exercise 3 (cont’d):

❏ Change README.txt, git add, git commit, and then git
status. (Just doing what we learned in Exercise 1.)

Because it tracks origin/master it knows that it is one
commit ahead of it. Wow! Now we have the makings
of a decentralized source control system. This is how
everyone on the planet knows Linus has updated
something. Actually in that case it will say our local
master branch is behind origin/master by so many
commits, but you git (pun intended) the point.

Another hint on what to do to
“push” your changes to the
origin server/remote. Gee, I
wonder what we are going to
do next.

Git Exercise 3 (cont’d):

❏ git push origin master (and type in your credentials) will
move your local changes to the master branch on the
remote repository.

Probably a lot that could be said here, but I think you
get the point. We have pushed the changes to the
remote repository. Now let’s head on over to github.
com and see if in fact the changes made it there.

git pull and git fetch

❏ git fetch --all will fetch all remote branches
and put them in things like origin/master,
origin/dev, etc. This is safe in that it does
not merge anything into local branches.

❏ git pull will fetch AND merge into your local
tracking branches. You may or may not
want this. So git pull origin master will
update origin/master and then (behind the
scenes) do git merge origin/master.

Tidbits

❏ You can do wicked things by pointing HEAD to
different commits. State and Federal laws may
apply.

❏ git branch --track bar origin/foo to make a new
(local) branch bar and have it track origin/foo

❏ git branch --set-upstream bar origin/foo to
make existing (local) branch bar track origin/foo

❏ git add -u will do a git add on everything that is
tracked and has been changed. Very
convenient if you update a lot of files - like in a
Drupal update.

Tidbits (cont’d)

❏ git add -A will do git add on EVERYTHING
including those files that have not been added to
the repository.

❏ The .gitignore file is where you place files that
you want git to ignore. *cough* settings.php
cough

❏ git checkout <commit hash> <filename> will
revert a single file back to a specific commit.

❏ git log --full-history --all <filename> to see full
commit history of a single file.

❏ git merge --no-ff forces a new commit even if you
can do a fast-forward

Tidbits (cont’d)

❏ git rm --cached <file> to remove a file from the
repository but not the directory.

❏ git reset --hard origin/master force the current
branch to be the same as origin/master. I use
this all the time on a non-tracking generic dev
branch.

❏ git ls-files to find a file in the repository
❏ git log --graph --oneline --all to see a graph of

all commits over time - cool. Others may find
this useful but I haven’t.

❏ git ls-remote like git show-ref but for remote
branches.

Tidbits (cont’d)

❏ Git GUIs
❏ http://www.syntevo.com/smartgit/
❏ gitk

❏ git show <commit> to see all the changes from a
single commit. Can also use git show --stat
<commit> to see only the files that were changed.

❏ git branch --contains <commit> to find branches
that have this commit

❏ git cherry-pick <commit> Normally merging a
commit will merge all the commits before it as well.
This will mrege in ONLY the changes from this
commit. Very useful, but be careful.

http://www.syntevo.com/smartgit/
http://www.syntevo.com/smartgit/

Links

❏ git-scm.com
❏ en.wikipedia.org/wiki/Git_(software)
❏ github.com
❏ gitref.org
❏ eagain.net/articles/git-for-computer-scientists

