Improving your Drupal
Development workflow with

Continuous Integration

Peter Drake
Sahana Murthy

Acauvia

DREAM IT.
DRUPAL IT.

Acauia

Meet Us!!!

Peter Drake
® Cloud Software Engineer @Acquia
® Drupal Developer & sometimes core contributor

Sahana Murthy

® Developer Evangelist @Acquia
® Open Source Proponent

® @sahanatweets

Agenda

- Standard Development Workflow

® What does it look like?
® What can go wrong and why"?

- Continuous Integration workflow

® What does it look like?
® Why is it better?
® Demo!

3 Acauia

What do we mean by a
“Standard Workflow”?

Acauia

‘ DREAM IT. DRUPAL IT.

Stage 1 — Hacking Code on Server

Pros Cons

* Quickest and * The slightest mistake
cheapest way to get causes a WSOD
started = Encourages panic-

« New features- visible driven engineering
immediately - Impossible to demo

 Bugs- easy to without a release
replicate Impossible to do with

« Feedback - instant a team

* No time-sucking - Basically, this never
“release engineering” works beyond “install
overhead a new module”

: Acauvia

Stage 2 - Develop locally, push to
production

Pros Cons

 Safer, and works w - Releases are slow +
teams scary

= Everyone uses a local |° #22;:,"09 8 leains
copy of the prod

database - Merge everyone's
) changes to release
= Obvious bugs never engineer's machine
make it to production - Test, find bugs, point
« Normal software dev fingers, fix bugs
process possible = Copy code to prod
- \Version control to SO

 Find new bugs, scramble
to fix or revert

: Acauvia

Is the Standard Workflow ideal
for today’s Agile World?

Acauia

‘ DREAM IT. DRUPAL IT.

What could go wrong”?

T >
R i e T
v 4 L
4 o A b »
. o F
- P
- - o5 .y'
< S s - B - - -:.

Acauia

DREAM IT. DRUPAL |

Common Pitfalls

—> Deploying broken Code

Developers overwriting each others work
Partial changes

In-development changes

Untested changes

—> Deploying broken Config
® Missing libraries or dependencies
® Wrong Drupal config settings

—> Deploying a broken Database Schema
® Failure to write schema update hooks
® Failure to run update.php
® Manual schema changes

9 Acauia

So...What is the RIGHT
way???

Acauia

‘ DREAM IT. DRUPAL IT.

Stage 3 — Continuous Integration

Pros Pros!

= Source code repository * Integrate code constantly

» Step zero for good » Break big features into
software engineering small steps

* It mostly doesn’'t matter * Automate the upgrade
which one you use process

* Version everything * Implement tests as you
Code, tests, go

dependencies
P » Update from main branch

- Keep it simple daily
= Main branch and tags - Reduce integration
Temporary, private conflicts, surface

branches only for major
changes

What is Continuous Integration?

« Continuous integration (Cl) is software engineering’s best
practice of merging all developer working copies with a
shared mainline several times a day.

)

DEVELOP

@\ Continuous ®

Integration ¢ ,yrce

TEST CONTROL

What is CI?
Cloud Server

CI - Principles

e Use Version Control

* Integrate Code Constantly

e Test on Clone of Production

« Automate Testing

* Automate Deployment

Use Version Control

Principles Recommendations
« Step “zero” for good software » Gitis a distributed revision
engineering control and source code
« Version everything management (sCM) system
« Code with an emphasis on speed.
« Config « Common Command:
« Database Schema * pull: grab changes from
« Automate Tests repository.
* Documentation * add: Index the changes.
« Depenencies « commit: track the changes.
* push: send changes to
Resources repository.

» status: list which files are
staged, unstaged, or
tracked.

® A Successful Git Branching Model
® Pro Git Book

Acauia

What problems does Version
Control solve for us?

Acauia

‘ DREAM IT. DRUPAL IT.

The deployment problem
Local Development Staging Production

U— U

[—
\!—\!

Code Code
PHP, JS, CSS PHP, JS, CSS

Acaula

With Version Control

Development Staging Production
—
_ Added a new I%‘
View -
L=
Added s
change to a s

—

theme

= &

Code Code
PHP, JS, CSS PHP, JS, CSS

Code changed
PHP, JS, CSS

Acauia

Source Code Conflicts

Development Staging Production

New user
added an
article!

A = e

Code changed Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS

AcQuia

Configuration to code

Local Development Staging Production
—
i

=

Export
configuration
to code -

g \5) \! I \!

Code changed Code Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS

Acauia

Stage your testing

Local Development Staging Production
-l
- 1
Run scripts from
pracht code that update
the database with - 1
new configuration. P -
\ Files
a B @&
Code changed Code Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS

Acauia

Version Control - Overview

GIT

®

B4 4
L s o
= S S Tomm

LOCAL bB pB CLOUD

DEV DEV

Integrate Code Constantly

Principles Results

« Break big features into small Identify conflicts early on

steps « Build quality is ensured
+ Commit changes often - Test coverage is consistent
* Automate the upgrade process « Development mistakes don’t
* Implement tests as you go impact others’ velocity

» Update from master branch daily

Changed
N
CODE CODE PR
) = = .
DEV DB DB CLOUD
L DESKTOP J L DEV _J

" .
Your Machine Acquia Cloud

Test on a Clone of Production

“Drupal depends heavily on its environment”

Principles Results

 lIdentical OS, Apache / MySQL / No more “It worked on my

Varnish, PHP extensions, PEAR machine!” or “It worked on the
testing database!”

libraries, assorted packages
» Use a current (scrubbed) version « Manual server tweaks will not
of production database propagate to production

* Unify and automate build of all

environments

Automate Testing

“If it ain’t broke, test it anyway.”
“If it isn’t tested, it doesn’t work.”

Principles Results
« Tests: build, unit, browser-based * Progress visibility for
* Run tests on every commit stakeholders

 Don’t merge changes until tests

pass « Bugs discovered before
* Announce when master breaks deployment
« Deploy frequently to QA

environment « Consistent quality (QA)

Acauia

Automate Deployment

“Drag-and-Drop is as automated as
automated gets!!!”

Principles Results

« Deployment should be a push-
button-and-relax operation « Deployments are worry-free
« Tag each release for future

 Eliminates human error
reference or rollback

« Snapshot databases for rollback . Ensures stakeholder
« Change database schema via
code expectations are met

« Update config via code
* No change is done until the
upgrade is automated

« Enables continuous deployment

Acauia

In a Nutshell!!!

Acauia

‘ DREAM IT. DRUPAL IT.

27

Three Phase Development

Development

Developers
collaborating and
testing.

Code should be

version controlled.

Multiple dev
environments
(local and online).

Staging/QA

Test updates from
development.

Should be exact
same environment
as production.

Sync content and
files from
production.

Production/Live

Live, stable version
of site.

Tested.

This is where users
login and add
content (usually).

Acauia

L ets watch Cl In
LIVE ACTION!

Acauia

‘ DREAM IT. DRUPAL IT.

How-To with Acquia Cloud:

- Start with your Drupal development on your local
machine using Acquia Dev Desktop (Drupal tuned
xAMP stack for developing locally).

- Commit to your source code management system.

- Build on Acquia Cloud Dev from SCM or push your
code from Dev Desktop to Cloud Dev.

- lterate multiple times, test, re-develop, and rebuild.

-

/e

R

4
[]&

DEV o8
DESKTOP

. J

-
Your Machine

CODE
 —— A s —— e
DEV DB CLOUD
DESKTOP DEV
L J L)

Your Machine Acquia Cloud

CODE
Cloud Sarver

CLOUD

.

DEV

J

-
Acquia Cloud

Whats’ next with Cl and
Drupal???

Acauia

‘ DREAM IT. DRUPAL IT.

Wait For It...

Acauia

‘ DREAM IT. DRUPAL IT.

32

Drupal 8
WOOT WOOT!

Acauia

DREAM IT. DI@.

