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Meet Us!!!

Peter Drake
® Cloud Software Engineer @Acquia
® Drupal Developer & sometimes core contributor

Sahana Murthy

® Developer Evangelist @Acquia
® Open Source Proponent

® @sahanatweets




Agenda

- Standard Development Workflow

® What does it look like?
® What can go wrong and why"?

- Continuous Integration workflow

® What does it look like?
® Why is it better?
® Demo!
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What do we mean by a
“Standard Workflow”?
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Stage 1 — Hacking Code on Server

Pros Cons

* Quickest and * The slightest mistake
cheapest way to get causes a WSOD
started = Encourages panic-

« New features- visible driven engineering
immediately - Impossible to demo

 Bugs- easy to without a release
replicate  Impossible to do with

« Feedback - instant a team

* No time-sucking - Basically, this never
“release engineering” works beyond “install
overhead a new module”
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Stage 2 - Develop locally, push to
production

Pros Cons

 Safer, and works w - Releases are slow +
teams scary

= Everyone uses a local |° #22;:,"09 8 leains
copy of the prod

database - Merge everyone's
) changes to release
= Obvious bugs never engineer's machine
make it to production - Test, find bugs, point
« Normal software dev fingers, fix bugs
process possible = Copy code to prod
- \Version control to SO

 Find new bugs, scramble
to fix or revert
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Is the Standard Workflow ideal
for today’s Agile World?
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What could go wrong”?
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Common Pitfalls

—> Deploying broken Code

Developers overwriting each others work
Partial changes

In-development changes

Untested changes

—> Deploying broken Config
® Missing libraries or dependencies
® Wrong Drupal config settings

—> Deploying a broken Database Schema
® Failure to write schema update hooks
® Failure to run update.php
® Manual schema changes
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So...What is the RIGHT
way???
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Stage 3 — Continuous Integration

Pros Pros!

= Source code repository * Integrate code constantly

» Step zero for good » Break big features into
software engineering small steps

* It mostly doesn’'t matter * Automate the upgrade
which one you use process

* Version everything * Implement tests as you
Code, tests, go

dependencies
P » Update from main branch

- Keep it simple daily
= Main branch and tags - Reduce integration
Temporary, private conflicts, surface

branches only for major
changes




What is Continuous Integration?

« Continuous integration (Cl) is software engineering’s best
practice of merging all developer working copies with a
shared mainline several times a day.
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CI - Principles

e Use Version Control

* Integrate Code Constantly

e Test on Clone of Production

« Automate Testing

* Automate Deployment




Use Version Control

Principles Recommendations
« Step “zero” for good software » Gitis a distributed revision
engineering control and source code
« Version everything management (sCM) system
« Code with an emphasis on speed.
« Config « Common Command:
« Database Schema * pull: grab changes from
« Automate Tests repository.
* Documentation * add: Index the changes.
« Depenencies « commit: track the changes.
* push: send changes to
Resources repository.

» status: list which files are
staged, unstaged, or
tracked.

® A Successful Git Branching Model
® Pro Git Book
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What problems does Version
Control solve for us?
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The deployment problem
Local Development Staging Production
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With Version Control

Development Staging Production
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Code changed
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Source Code Conflicts

Development Staging Production

New user
added an
article!
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Code changed Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS
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Configuration to code

Local Development Staging Production
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Export
configuration
to code -
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Code changed Code Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS
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Stage your testing

Local Development Staging Production
-l
- 1
Run scripts from
pracht code that update
the database with - 1
new configuration. P -
\ Files
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Code changed Code Code Code
PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS PHP, JS, CSS
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Version Control - Overview
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Integrate Code Constantly

Principles Results

« Break big features into small Identify conflicts early on

steps « Build quality is ensured
+ Commit changes often - Test coverage is consistent
* Automate the upgrade process « Development mistakes don’t
* Implement tests as you go impact others’ velocity

» Update from master branch daily

Changed
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Test on a Clone of Production

“Drupal depends heavily on its environment”

Principles Results

 lIdentical OS, Apache / MySQL / No more “It worked on my

Varnish, PHP extensions, PEAR machine!” or “It worked on the
testing database!”

libraries, assorted packages
» Use a current (scrubbed) version « Manual server tweaks will not
of production database propagate to production

* Unify and automate build of all

environments




Automate Testing

“If it ain’t broke, test it anyway.”
“If it isn’t tested, it doesn’t work.”

Principles Results
« Tests: build, unit, browser-based * Progress visibility for
* Run tests on every commit stakeholders

 Don’t merge changes until tests

pass « Bugs discovered before
* Announce when master breaks deployment
« Deploy frequently to QA

environment « Consistent quality (QA)
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Automate Deployment

“Drag-and-Drop is as automated as
automated gets!!!”

Principles Results

« Deployment should be a push-
button-and-relax operation « Deployments are worry-free
« Tag each release for future

 Eliminates human error
reference or rollback

« Snapshot databases for rollback . Ensures stakeholder
« Change database schema via
code expectations are met

« Update config via code
* No change is done until the
upgrade is automated

« Enables continuous deployment
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In a Nutshell!!!
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Three Phase Development

Development

Developers
collaborating and
testing.

Code should be

version controlled.

Multiple dev
environments
(local and online).

Staging/QA

Test updates from
development.

Should be exact
same environment
as production.

Sync content and
files from
production.

Production/Live

Live, stable version
of site.

Tested.

This is where users
login and add
content (usually).
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L ets watch Cl In
LIVE ACTION!
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How-To with Acquia Cloud:

- Start with your Drupal development on your local
machine using Acquia Dev Desktop (Drupal tuned
xAMP stack for developing locally).

- Commit to your source code management system.

- Build on Acquia Cloud Dev from SCM or push your
code from Dev Desktop to Cloud Dev.

- lterate multiple times, test, re-develop, and rebuild.
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Whats’ next with Cl and
Drupal???
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Wait For It...
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Drupal 8
WOOT WOOT!
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